
AD-A233 471 I5 EC
"I. ,,y Information Systems Engineering Command

Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND COMPUTER SCIENCES

2T
FEB 0 6 1S91 Q '

Assessment and Development
of

Software Engineering Tools

I . . - s.., A

I January 1991

ASQB-GB-90-l5

AlRMICS
115 O'Keefe Building
Georgia Institute of Technology
Atlanta, GA 30332-0800

91 2 05

UNCLASSIFIED

Form ApprovedREPORT DOCUMENTATION PAGE OMB No704-16

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISrRIBUTION / AVAILABILITY OF REPORT

N/A
2b. DECLASSIFICATION / DOUWNGRADING SCHEDULE N/A

N/AN/

4. PERFORMING ORGANIZATION REPORT NUMMER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

ASQBG-I-90-015 N/A
Sa. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a NAME OF MONITORING ORGANI7ATION(it applicable)

Georgia State University N/A
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and Zip Code)

University Plaza
ATTN: Dep of Math & Comp Science N/A
Atlanta. GA 30303

8a. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable)

AIRMICS ASQB - GI
Sc. ADDRESS (City, State. and ZIP Code) I0 soii" pF F

I
r
M
wrNw NrmgS

115 O'Keefe Bldg., PROGRAM PROJECT TASK WORK UNIT
Georgia Institute of Technology ELEMENT NO. NO. NO. ACCESSION NO.

Atlanta, GA 30332-0800 62783A DY10 02-04-01
II. TITLE (Include Security Classification)

Assessment and Development of Software Engineering Tools (UNCLASSIFIED)

12. PERSONAL AUTHOR(S)

Sue Conger; Martin Fraser; Ross Gagliano; Kuldeep Kumar; Ephraim McLean; G. Scott Owen

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

1 9 9 1 , January, 16 31
PRIOM _ TO

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

CASE; Intelligent TestBed; Vienna Development Method; 2167A; 2168;
FIELD GROUP SUB-GROUP RSCMGT System; Software Development Environment; Process Descrip-

I Ition Language; Boehm; Davis/Olson; Waterfall Model; Functional Decom-
position; GOD

19. ABSTRACT (Continue on reverse it necessary and identity by block number)

The research project began with the feasibility study and preliminary design of the Intelligent TestBed (ITB).
The final technical report describes the motivation for, as well as the design and development of, the ITB.
The goal of the ITB is to provide a capability to catdgorize and associate phases of the systems development
life cycle with software methodologies and Computer-Aided Software Engineering Tools. By automatically link-
ing phases to tools, the ITB could benefit two different groups of users. First, researchers and developers can
determine the availability, feasibility and similarity of software tools that track systems development and mainte-
nanc,. Second, managers and analysts, who may have no particular preferences for methods or tools, will be
able to assimilate advancements in the several fields in addition to possessing the means to compare available
products.

20. DISTRIBUTION / AVAIIILrY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED / UNUIMITED Q" SAl AS ityT. Q DTIC USERS UNCLASSIFIED

2la. NAME OF RESPONSIBLE INDMIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
Howard C "Butch" Higleg..= " (404) 894-3110 ASQB-GI

DD FORM 1473, 64 MAR 83 APR edition may be used until exhausted srurrv C'1.A VPICATION OP Tills PAGE
All other editions are obsolete UNCLASSIFIED

Computer-Aided Software Engineering (CASE) tools and their proper use is a major
concern of the Information Systems Engineering Command. As such, a technical study
was performed by Georgia State University, under close direction of AIRMICS, to devise
a method by which the software developer could be assured of choosing the correct tool
for his particular application. A prototype was derived from the method and was built to
show the functionality of the method. The prototype tool is called the Intelligent Testbed
(1TB) and is available for demonstration by AIRMICS.

The enclosed final report provides an understanding of the method and the ITB.
AIRMICS has attempted to direct the focus of the report on the features to be gained by
the use of the tool and method and not so much on the technical details. As such, the
appendices have been withdrawn but are available upon request. Your comments on all
aspects of the document are solicited.

This research report is not to be construed as an official Army position, unless so
designated by other authorized documents. Material included herein is approved for
public release, distribution unlimited, and is not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

Glenn E. Racine - hnR. Mitchell
Chief KI Director
CISD AIRMICS

~Ur

, .. i '.. -......

B Y

Dist , ".':,

Final Research Report

ASSESSMENT AND DEVELOPMENT OF SOFTWARE ENGINEERING TOOLS

Martin D. Fraser, Ross A. Gagliano, G. Scott Owen,

Department of Mathematics and Computer Science

and

Sue A. Conger, Kuldeep Kumar and Ephraim R. McLean

Department of Computer Information Systems

GEORGIA STATE UNIVERSITY

Atlanta, GA 30303

Prepared for

U. S. Army Institute for Research in Management
Information, Communications and Computer Sciences (AIRMICS)

115 O'Keefe Building
Georgia Institute of Technology

Atlanta, GA 30332

Contract Number: DAKF11-89-C-0014
Contract Period: 2/16/89 - 3/30/90

Project Overview

This Research Reort describes the work accomplished under Contract
DAKF11-89-C-0014 for the U. S. Army Institute for Research in Management Information,
Communications and Computer Sciences (AIRMICS) by Georgia State Universiy (GSU).
The research was carried 3ut by the following six principal investigators at GSU: Drs.
Martin D. Fraser, Ross A. Gagliano, and G. Scott Owen of the Department of Mathematics
and Computer Science within the College of Arts and Science, and Drs. Sue A. Conger,
Kuldeep Kumar, and Ephraim R. McLean of the Department of Computer Information
Systems within the College of Business Administration. Dr. Gagliano served as Project
Director with Dr. Owen as Associate Project Director.

This is the final technical report on this project, consisting of three main sections and
four appendices. The appendices contain copies of two papers and two user guides. The
papers were published in the Proceedings of, and presented at, the Eighth Ada Technology
Conference held in Atlanta during March 5 - 8, 1990. In the main body of the report are
contained discussions of the salient issues involved in this research with appropriate related
topics suggested for future investigation included in a future activities section.

The views and conclusions in this report are those solely of the investigators and
should not be interpreted as representing official policies, expressed or implied, of
AIRMICS, the Department of the Army, Georgia State University, or other government
agencies.

On behalf of all of the GSU investigators, an expression of sincere appreciation is
extended to both the AIRMICS Division Chief, Mr. Glenn Racine, and to the Technical
Monitor, Mr. Howard (Butch) Higley, for their constant support during this project.

Table of Contents

Pagre
Project Overview I

Table of Contents

Administrative

Project Accomplishments 2

Project Background 7

Introduction 8
Software Methodologies 8
Software and CASE Tools 8
Other Approaches 9
GSU Development Methodology 10

The Intelligent TestBed (ITB) 12
Background 12
ITB Development 12
ITB Specification and Implementation 13

Software Tools 20
Closeness Measure Update Tool 20
Reuse Effort Assessment Tool 20
Specifications Development Tool 20

Future Activities 22
Extensions to the ITB 22
Software Tools Survey 25

Summary 26

References 27

Appendices

A. "A Structured Stepwise Refinement Method for VDM"

B. 'The Intelligent Testbed: A Tool for Software
Development and Software Engineering Education"

C. The ITB User Manual for the IBM PS/2

D. The ITB User Manual for the Mac IIcx

E. VDM Specification of the ITB

ii

Administrative

Under contract DAKF11-89-C-0014 which became effective on 16 February 1989, six
faculty investigators and two graduate students at Georgia State University (GSU)
participated in the research project described in this report. The focus of the research is
software engineering tools, and the technical sponsor of the project is the U. S. Army
Institute for Research in Management Information, Communications and Computer
Sciences (AIRMICS) located on the Georgia Tech campus in Atlanta. Contractual
arrangements were provided through the U. S. Army Forces Command (FORSCOM) at
Fort McPherson, GA.

Each investigator contributed to all phases of the project, although each received
support (one teaching course release) during only one academic quarter. The actual
amount of time that each investigator spent on the project varied over the contract period,
but the total time spent on the project per investigator exceeded the release time
(nominally, one person-month or about 170 hours of effort pro-rated over approximately 13
months). Two investigators (Fraser and Gagliano) received support during one quarter of
the calendar year 1989, while the other four received support only during the summer
quarter 1989.

The project was originally scheduled for a ten-month period; however, a no-cost
contract extension was requested and granted such that the project was extended to thirteen
months (until March 30, 1990). Thus, a total of thirteen monthly Progress Letters were
submitted in accordance with the amended contract.

In accordance with project and contract requirements, several In-Progress-Reviews
(IPRs), both formal and inforal, were conducted. A chronology of the significant project
events and activities is provided in the next (Project Accomplishments) section.

Project Accomplishments

The major research accomplishments during this contract period were as follows:

Project Organization and Management

1. Formulated an overall project plan for task accomplishment and specific
investigator assignments;

2. Conducted periodic organizational meetings;

3. Conducted weekly technical meetings;

4. Held preliminary meeting at AIRMICS in November 1988;

5. Conducted first IPR on June 9, 1989 at AIRMICS;

6. Presented overview of the project at the AIRMICS/MMES Reusability/Metrics
Workshop on June 20, 1989 at the Pierremont Plaza Hotel in Atlanta;

7. Held second IPR on October 27, 1989 at AIRMICS;

8. Hosted AIRMICS personnel at GSU and conducted a demonstration of the ITB
on the MAC IIcx and on the IBM PS/2 in November 1989;

9. Provided concepts and ideas to AIRMICS personnel in early 1990 for
presentation to the new DISC4 (LTG Hilmes) at an anticipated March 1990
Atlanta visit; and

10. Briefed Dr. John Michael Palms, new GSU President, on AIRMICS and results
of this project, as well as other prior but related computing research during
January 1990.

Literature Suny

1. Initiated literature surveys and requests for materials on the various topics and
technical issues involved as indicated below;

2. Reviewed articles specifically on CASE tools, software reuse, formal software
specification and design methods, the Vienna Development Method (VDM), and
Fnction Points Analysis (FPA);

3. Compiled list of references (attached); and

4. Obtained copies of DoD Software Standards 2167A and 2168.

2

Conferences. Meetings and Symposia

1. Attended the Eastern Multi-Conference sponsored by the Society for Computer
Simulation (SCS), the IEEE and the ACM in Tampa, FL in March 1989;

2. Attended the I1th International Conference on Software Engineering in
Pittsburgh, PA in May 1989;

3. Visited the Software Engineering Institute (SEI) at the in Pittsburgh, PA in May
1989;

4. Visited several agencies in the Washington, DC area to describe the research
project and the ITB in November 1989; and

5. Attended 8th Ada Tech Conference, March 1990, Atlanta.

Equipment and Software

1. Obtained copies of, and demonstrated, commercial CASE products (e.g.,
KnowledgeWare, Excelerator, IEW, and BriefCASE);

2. Obtained State approval for the procurement of, and ordered and subsequently
received, the Alsys Ada compiler for the GSU Sun workstations;

3. Ordered, received, and tested an RGB-to-video converter system (board and
adater) to allow the recording of demonstrations of systems such as the ITB and
RSC_MGT;

4. Obtained State approval for the procurement of, and ordered, received and
installed the MAC IIcx; and

5. Installed several demonstration packages on the MAC Ilcx.

Software Tools

1. Prepared re-design plan for GSU RSCMGT System as a software tool;

2. Performed the preliminary analysis of the design of the ITB, a prototype of which
was built as a software tool to provide tool needs-assessment;

3. Planned, scripted, and subsequently produced a master videotape copy of a
session demonstrating the ITB;

4. Made distribution copies of the videotape of the demonstration session of the ITB;
and

5. Distributed copies of the ITB videotape to AIRMICS, the GSU administration,
and selected federal agencies in the Washington, DC area.

3

1. Prepared an invited working paper on the design of the GSU RSC MGT System
and its multidimensional scaling implementation using conceptual closeness;

2. Prepared and submitted a joint paper for the 9th IEEE Phoenix Conference onthe ITB;

3. Prepared and submitted two papers for the 8th Ada Technology Conference
(Atlanta during March 1990);

4. Prepared and sent abstracts on the ITB to the 1990 ACM 18th Annual Computer
Science Conference (in Washington, DC during February 1990);

5. Received acceptance of two papers for the 8th Ada Tech Conference, and
completed the technical work on the two presentations; and

6. Gave two presentations (the first on the use of the ITB for Software Engineering
instruction and the second on VDM and the relationships between formal
methods and structured techniques; copies of both papers are included in the
appendices) for the 8th Ada Tech Conference which was held at the Hyatt
Regency in Atlanta, March 5-8 1990.

Assistance to Other Agencies

1. Asked by Mr. Robert Holibaugh of the SEI to provide some assistance on the use
of VDM;

2. Contacted by Mr. Ted Ruegsegger of SofIech, Inc., which is under contract to
the RAPID Center, to provide copies of the GSU EFISS paper (October 1988)
and other information on the GSU RSCMGT System;

3. Contacted by Mr. John Atkins of West Virginia University (also with the
NASA-funded AdaNet project) to provide information on the GSU RSC-MGT
System;

4. Sent informatio, to Mr. Atkins on the GSU RSC MGT System, who
subsequently called to set up a visit at Morgantown, WV to discuss the GSU
implementation of the Faceted Classification Scheme (FCS) and the conceptual
closeness measure (trip planned for October 1989);

5. Completed coordination of the visit to Morgantown to provide briefing on GSUimplementation of the FCS with the conceptual closeness measures in the GSU
RSC MGT System (trip was later postponed pending expenses being paid by
NASA);

4

6. Sent materials (EFISS paper of October 1988 and information on the GSU
RSC MGT System) to Mr. Ruegsegger of SofTech, Inc./RAPID Center in
Waltham, MA; and

7. Sent requested copies of papers on the ITB to the University of South Alabama,
Auburn University, the University of Alabama, and Clemson University.

Products

GSD2M

1. Developed and refined the Georgia State Development Methodology (GSDM)
to derive the Georgia State Development Life Cycle (GSDLC) from four
standard system application development methodologies: IEEE, DoD Standard
2167A, Boehm, and Davis/Olson; and

2. Completed GSDM and GSDLC.

IT
1. Initiated and completed the design of the prototype ITB;

2. Implemented the prototype ITB on an IBM PS/2 Model 80 using Guide 2.0
hypertext under Microsoft Windows/386;

3. Began populating the prototype ITB with software methodologies and references
of example CASE tooIs;

4. Undertook second phase of the project which included porting the ITB to both a
PS/2 Model 70 and a Mac IIcx (ordered specifically for the project);

5. Completed the installations of the several prototype systems of the ITB, which
was done on an IBM PS/2 Model 80 (using Guide 2.0 Hypertext under MS
Windows/386), and successfully ported to the Mac Icx (also using Guide);
and

6. Wrote user documentation for the ITB for both the IBM PS/2 systems, and the
Macintosh IIcx.

5

RSCIMGT System Re-tool

1. Documented the designed of the multi-dimensional scaling (MDS)
implementation of the conceptual closeness technique in the GSU RSC_MGT
System; and

2. Began conversion of the GSU RSCMGT system for operation on a mainframe,
the GSU System D (Amdahl).

Formal Specifications

1. Reviewed current status of PSL/PSA and analyzed its relationships to VDM; and

2. Developed stepwise refinement process of SADT using VDM.

6

Pro iect Background

The research project began with a feasibility study and preliminary design of the
Intelligent Test Bed (IrB. This report describes the motivation for, as well as the design
and development of, the ITB. The goal of the ITB is to provide a capability to categorize
and associate phases of the systems development life cycle with software methodologies and
Computer Aided Software Engineering (CASE) tools. By automatically linking phases to
tools, the ITB could benefit two different groups of users. First, researchers and developers
can determine the availability, feasibility and similarity of software tools that track systems
development and maintenance. Second, managers and analysts, who may have no
particular preferences for methodologies or tools, will be able to assimilate advancements in
the several fields in addition to possessing the means to compare available products.

The research project consisted of four related tasks: (1) the analysis of the needs for,
and the development of, software tools for demonstration on a prototype software
maintenance workstation; (2) a review of potential Reusable Software Component (RSC)
and Computer-Aided Software Engineering (CASE) tools; (3) a preliminary investigation
into the appropriateness of the Vienna Development Method (VDM) for software
requirements and specification analysis; and (4) an implementation of a prototype ITB
which is an example of a software tool that has application for both software tool needs
assessment and analysis.

7

Introduction

Software Methodologies

A software development methodology is generally considered to be a comprehensive
set of procedures, tools and techniques. Such a set of items within a methodology is
designed to work together to assist in the completion of a software system. In the literature
of an estimated 500 articles on software methodologies, there are many articles in which
comparisons between various methodologies are given. However, no evidence has been
found that anyone has attempted to categorize them exhaustively, either by author
(associated with a methodology) or by phase of the development life cycle. Such a
categorization would obviously be very tedious, expensive, and time-consuming, not to
mention the fact that it would run the risk of being obsolete as soon as it was completed.

A software specification or design representation form is a schema for modeling, or
describing, a system through its various stages of development [FREE80]. During systems
development, developers strive to move a system from its current (real or object) state
towards a representation (or model) of the final state of the system. This is usually
accomplished through diagnosis and manipulation of the model of the desired system which
is then submitted for implementation.

Subsequent system implementation is, therefore, a set of sequential transformations
from an abstract description of the desired (or designed) system through successively more
concrete manifestations to a final .ystem which becomes the installed version of the system.
Representation forms, correspondingly, provide a schema or template which is used by the
designers to define both the syntax and the semantics of the system model.

Software and CASE Tools

In the context of software development methodologies, a software tool is any physical
device or concept that helps a developer or analyst perform development tasks. These tasks
may include analysis (understanding the current system, verification of the understanding, or
diagnosis), specification, design (logical, external or physical), implementation and
operation of the system. Tools can be either manual (principally by pencil and paper) or
automated (tools, dictionaries, repositories, or environments). Specialized environments
are known as Software Development Environments (SDEs). Some particular software
tools are called CASE tools.

A CASE, or Computer Aided Software Engineering, tool is an automated tool,
facility or SDE that is used in the production, enhancement, or maintenance of software
[SUYD87]. Through CASE tools, many of the manual representation forms have been
automated and whose development is guided by an appropriate applications methodololy.
The categorization of such tools would provide valuable insight to potential productivity
gains from using specific CASE tools.

8

Of course, this may be premature at the present time because there are still many
difficulties with CASE tools. The initial CASE tool market was strictly for new applications
development; thus, few CASE tools, if any, are specifically for software migration,
enhancements, or maintenance. Moreover, despite the hundreds of CASE tools that have
been advertised, it has been reported that less than 10% of the mainframe users have
actually purchased such tools. Additionally, of those that purchased CASE tools, only 1 to 2
% actually have them in use, and where 80% describe their use as experimental only
[CONG89].

The original intent of this project was to concentrate on CASE tools that appear to
be the most romising for applicability to the Standard Army Management Information
Systems (STMIS). Early in the project, however, it was recognized that the most
significant class of such tools are commerical CASE tools with only the potential for specific
STAMIS applications. Also, inasmuch as other GSU research has involved software reuse
and functional decomposition [GAGL88a, GAGL88b, GAGL89, OWEN87, OWEN88a,
OWEN88b], which are two important related applications, several additional prospective
tools are described in this report.

Other Approaches

There are other approaches for the comparison of methodologies and tools. For
example, there are Process Description Languages (PDLs), Software Tool Kits (STKs), and
the SDEs that were previously mentioned.

Process Description Languages (PDLs). PDLs can be used to describe the
relationship between software development and associated tools. PDLs can correlate both
intermediate and end products by phase of the life cycle. However, a PDL is aimed less at
organizing and analyzing existing methodologies than to provide: 1) formal, usually
algebraic, mechanisms for describing a methodology; and 2) means for generating (adapting
from existing scripts) specific methodologies to suit a particular development context.

By contrast, the ITB is designed to organize and analyze tools by existing
methodologies and particular phases of the life cycle supported. The PDL approach, on the
other hand, is used for describing and developing customized methodologies for specific
environments. Though both are based on life cycle phases, they are supported from
different bases (formal description for PDL versus informal for ITB), and intended for
different ends (SDE generation for PDL versus phase/methodology/tool relationships for
the ITB).

Software Tool Kits (STKs). Another related approach involves the development of
a Software Tool Kit (STK), the first of which that was proposed was called the
"Analyst-Tool-Kit." An STK is a collection of methodologies, tools and techniques from
which a developer could select appropriate components as needed. Unlike the PDL
approach or the ITB, the STK does not have an overall organizing scheme. Like the ITB,
however, it is based upon an informal descriptions of the methodologies and tools, but as yet
no automated support for STKs have been proposed.

Software Development Environments (SDEs). Two SDEs are IS/DSS and
Methodology EngineeringR The concept of Information System / Development Support
System (IS/DSS) was first proposed [WELK83] as a method for defining and generating
customized systems development methodologies and automated systems development
support. Again, like PDL, it provides a formal approach to describe methodologies based
largely on General Systems Theory. Some IS/DSS concepts have been used in defining

9

methodologies for both office automation, and the European Economic Community
ESPRIT project [SCHA88.

Methodology Engineering is an extension of IS/DSS [KUMA88] which, again like
PDL, attempts to generate customized methodologies and automated support for specific
systems development contexts. The development of Methodology Engineering is currently
underway at both GSU and a commercial firm, MetaSystems, Inc.

GSU Development Methodology

Prior to developing the ITB, it was necessary to identify its dimensions and select
certain applicable phases of the software life cycle. That approach was called the Georgia
State Development Methodology (GSDM), and it is an attempt to provide answers to key
questions; e.g., which life cycle is the most appropriate, how are phases defined, and how
can tools and methodologies be related?

Four of the major stem development life cycles were considered: the DoD
Standard 2167A [D2167A], the Boehm model [BOEH81], the IEEE Standard Life Cycle
[IEEE83], and the Davis/Olson Life Cycle [DAVI5. A reference life cycle was proposed,
called the Georgia State Development Life Cycle (GSDLC) that would correlate various
components of the four.

Accordingly, under the rubric of GSDM, generic steps in both the system and
software development life cycles were specified in the GSDLC. These steps (see Table I)
are specified as follows: Initiation, Problem Definition, Feasibility, Analysis, Conceptual
Design, Detailed Design, Coding, Testing, Installation, Operation, and Maintenance. The
.definitions and descriptions of each of these steps are detailed in the Appendices.

10

Table I. fe Cycle Comparisons

GBDM IDoD 2167A Boehm 1332 Davis/Olson

Sys Init SLC-Req
Proj Defn SLC-REQ Defn Proj

Feasibility Feasibility SLC-Req Defn-Feas
GSDLC Anal SRA Req DLC-Req Defn-RA

" Conc Des Prel Des Prod Des DLC-Des Defn-C Des
" Design Det Des Det Des DLC-Des Dev-Phy Sys
" Code/Unit Code/CSU Code DLC-Impl Dev-Prg Dev
Test Test
Testing CSC/Integ/ Integ DLC-Test Dev-Prod

CSCI Test Dev
Instl Sys Integ Impi DLC-Impl Instl-Conv/

Ckout Testing
Oprn/Maint Maint SLC-Oprn Instl-Post

Maint Audit
Retirement Phaseout SLC-Retire Instl-Post

Audit
Continuing Activities -- All Phases

V & V Review V & V Nngt Rev

CM Not Clear Cm

Legend
--..--------------.-.----.------

Conc = Conceptual
CM = Configuration Management
CSU = Computer Software Unit (2167A)
CSC = Computer Software Component (2167A)
CSCI = Computer Software Component Integration (2167A)
Defn = Definition
Des = Design
Det Detailed
DLC = Development Life Cycle (IEEE)
Integ = Integration
Mnt = Management
SLC= Sstem Life Cycle (IEEE)
Prel = Preliminary
Proc = Procedure
Prod = Product
Rev = Review
V & V = Verification and Validation

11

The IntelligentTestBed (ITB)

Background

The motivation for much of the research in this project really began as an extension
of a previous software reusability project that, although conducted for AIRMICS, was
managed through the Martin Marietta Energy Systems (MMES) Company. The purpose of
the earlier MMES project was to develop and/or investigate prototype software tools
specifically for the creation, storage, and retrieval of Ada Reusable Software Components
(or Ada RSCs). Such tools then would assist in the shift of RSC applications "to the left" (or
earlier) in the software development life cycle. In other words, there was a strong indication
that features of reusability should encompass more of the software development life cycle
such as requirements, specifications, and design, and not simply the implementation or
coding phases.

It was envisioned that these tools would normally interface with other software tools
or RSCs through software library systems. The development of the GSU RSC MGT
System took on greater significance, therefore, during its prototype implementation.
Moreover, in that same MMES project, approximately fifty commercial software firms
engaged in embedded systems development were canvassed to determine the extent to
which they employed RSC libraries, Ada development facilities or CASE tools. The results
from this survey indicated that a far greater need existed than anticipated for the means to
both describe actual or proposed tools (RSC, CASE or other) and to assess the ability of the
tools to solve MIS problems, especially in an Ada environment.

It was from this need that the idea for the ITB emanated. The basic function of the
.ITB would be to categorize software tools as well as associate software development life
cycle phases with design methodologies. The long range goal of the ITB was for it to
facilitate the analysis of candidate software tools and provide a means to test "p roofs of
concept" (the testbed) for actual tool specifications. Other future roles of the ITB would
allow for: its use in the development of tutorials on software tools; and the introduction of
an expert system to guide development (the " teljgigl). Fully functional, the ITB would
provide answers on how to: evaluate a set of candidate tools; find the right tools for
particular instances; and determine the compatibility between various tools.

ITB Development

The original approach to the design of the ITB was to simply build an automated
matrix generator which would relate the data base of existing tool characteristics or
specifications of potential but non-existent tools (rows of the matrix) to the phases of the
software life cycle (columns). This information could then be presented in both graphical
and textual formats; i.e., through the use of Hypertext.

Such a matrix would indicate the relative value of candidate tools in the life cycle
based on tool characteristics. Knowledge of currently used tools would indicate what is
being used and how it is used. Next, current tools, methods and techniques in use, say, by
the Army would be mapped to this matrix. Similarly, existing tools not currently in use
would be surveyed and mapped to a second matrix. The ITB could then provide functions
for automatically comparing these matrices to identify specifically lacking areas.

12

Nonetheless, it was felt that the long range goal of the ITB was that it should = be
just a database of software tools. Thus, almost from the very beginning, it was decided that
the focus of this part of the research should be the prototyping of a system with the potential
for an intelligent front-end. Moreover, this prototype should provide an indication of the
potential for the development of a system which accepts desired attributes from the life
cycle and matches them with features of either available or potential tools.

Three different audiences could gain useful information into methodologies and
CASE tools through the ITB. First, researchers and developers could determine the
availability, feasibility and similarity of software tools that track systems development and
maintenance. Second, managers and analysts would have a basis to compare available
CASE products, and a means to comprehend advancements in the several fields. Third,
instructors could use the ITB to promote greater understanding of the relationships
between different methodologies, CASE tools and development phases.

After considerable discussion, it was decided that the phases of the GSDLC should
be one of the major dimensions of the ITB. Three methodology classes was chosen as the
other dimension. Recall that four main life cycles (Boehm's Waterfall, IEEE Standard,
Davis/Olson MIS approach, and the DoD Std 2167A) were combined to form the more
generic GSDLC.

ITB Specification and Implementation

The design of the 1TB can be efficiently explicated in a formal specification language
[DUCE88]. The Vienna Development Method (VDM) was chosen, and a top-level domain
specification of the ITB was then prepared in the VDM language META-IV [JONE78,
BJOR78]. A VDM specification of the ITB is contained in appendix E.

The ITB development used a Guide 2.0 hypertext system [BIGE88] running under
Microsoft Windows/386 on the IBM PS/2 Model 80. Later, the ITB was ported via a Guide
hypertext system for the Macintosh Ilcx. In the most current implementation, the ITB
consists of five levels (see Figure 1). At the top is a display of the phase/method grid (Level
I), with the phases of the system life cycle as they are shown across the top of the screen and
the development approaches or methods shown down the left side.

To simplify the classification of these methodologies, they have been organized into three
primary groups: Process Methodologies, Data Methodologies and Object-Oriented
Methodologies. These groupings are described in greater detail in Appendix B.

13

L e Cotnt

I Phase/ Method Grid

Phase Methods

13 (Columnn) (Row)

List of Methodologies

(l.l methodologies)

il
List cjf Features

(E (I... m feane)

IV Descriptions of Features

V Definitions, examples and CASE
support of those features

Figure 1. GSU ITB Schematic Overview

From the top level, additional information can be obtained on a particular phase
(i.e., the column under Feasibility") by selecting Route A and moving down to Level II.
Similarly, information on a method (e.g., Process Methodologies) can be obtained through
Route B; and a row/column cell is Route C. An example of such paths are shown in Figure
2.

14

0
0

0 D E\D[DI

00

BL: A P'ocputRo

601lon 9 Cowr.r, ,rmmary

Figure 2. ITB, Levels I and 11.

Once a particular methodolo$y has been specified at Level I (e.g., Gane and Sarson),information on the features of this methodology can be obtained through Route D to LevelI1. Detailed descriptions of each of these features (e.g., Data Flow Diagrams) are found atthe next level down, Level IV, through Route E as is shown in Figure 3.

15

P dUAS. cebiuv Iuwmw

Dat

Bton 0 Dcmntalioen'Rapeoisio. form IOwn*m~raty list

£an Sas,. Analys'a PR64.revfnni

0613'o V IST Is

Button E Denioon ot loot. B.- t lt turth info-mmison

Garts & Sartori AnaIy, .'qutemoenlt
Dais Fio. Dagi

:CASE Too S., =PO'

Figure 3. MT, Levels III and IV.

Finally, at Level V which is the lowest level, information is available on specific
feature definitions (Route F; see Figure 4), examples of use (Route G; see Figure 3), and
listings of CASE tools that currently support this feature (Route H; see Figure 6). All of
these steps are summarized in Table 11.

16

Gonear Iroon Anlys hisquemonis
Data Flow Digram

Defiitio of ~ra nit.Br.ojeto hn

CAS 'oo SWE-lANL rcSm cino rntraef

Duto F eiii n oat1 S moml&~cino aess

Do&N RECANLE FDeiaagrams; org

CCL Caes.Dsaat e theei, targetowio system0 ~ a cats; sorm tboo ofeet cbise pet

Figu E N . TAGL -B Filel 'Ot sh atn F.t;0trg

17ormmfrct myb uanldo

- "Oms

omm ct
Sys,*#% C am .66 . bCp

Fiur . T, eelVshwngG

c w iw
ba P..amm

Cs~ ~ m So* Da "M5WS.

CASE 1.. £Oa..

____ Sam*
Ccerlftt

Figure 6. ITB, Level V showing H.

soft o ft~me18

Table II. Overview of GSU ITB

Level Description

I Methodologies by Phase GSDLC

II Initiated by clicking on a row.
Major methods' authors
(CASE Tools that support the Method)

II Initiated by clicking on a column.
Authors whose Method support that Phase
(CASE Tools that support a Phase)

II Initiated by clicking on row/column intersection.
(Authors' Methods and CASE Tools for that Phase
and that Method)

III Initiated by clicking on a specific Method/CASE
Tool. (For that Author/Tool, the Documentation
Requirements and Graphic Representation Forms
for a particular Author/Tool; e.g., Gane & Sarson/
Analysis: DFD, Data Dictionary, Structured
English, Decision Table/Tree)

IV Initiated by clicking on a specific feature.
(Definition of Tool, buttons for further
Information)

V Initiated by clicking on "Definition of Symbols"
(Symbol definition for representation form or
document table of contents; e.g., Gane & Sarson:
external entity - square, process - rounded
rectangle, etc.)

V Initiated by clicking on "Examples"
(Example of representation form)

V Initiated by clicking on "CASE Tool Support."
(CASE tools - go to row/column intersection for
CASE tools; e.g., Excelerator, IEW, KnowledgeWare,
etc.)

19

Software TooI

The following section contains a discussion of the concepts underlying potential
software development tools that could be introduced via the ITB. This is due to a lack of
similar, available tools. Three specific prototype RSC tools are described: a Reuse Effort
Assessment (REA) tool, a Closeness Measure Update (CMU) tool, and a Specifications
Development (SD) tool [OWEN88b].

The REA tool is intended to advise on potential software reuse based on RSC size,
structure, and documentation. The CMU tool would automate the process of deciding when
closeness updates are needed. The SD tool would provide a means for transitions from
informal to formal software requirements and specifications, ultimately producing a design,
perhaps by the Object Oriented Development (OOD) method. The development of these
tools would be accompanied by a comprehensive survey of existing non-Ada CASE tools as
well as a compilation of prospective tools for the Ada MIS Environment.

Closeness Measure Update (CMU) Tool

The previously developed GSU RSC Management System (RSC MGT System) is a
working prototype implemented with a feedback feature that is used to modify the
perceptual (conceptual) closeness measures for Riz usable Software Components (RSC's).
Although the RSCMGT system collects the necessary data, the user still must decide when
an update is needed and how to generate this update. A Closeness Measure Update (CMU)
tool would automate this process as well as aid the user in deciding exactly when a closeness
update is needed [GAGL88b]. One approach to the design of the CMU is the use of fuzzy
logic to estimate the disparities between old and new closeness measures.

Reuse Effort Assessment (REA) Tool

The Reuse Effort Assessment (REA) tool would advise a potential software reuser
on the tradeoffs between reusing a RSC versus developing a brand new software product.
Essentially, the REA would provide a degree of difficulty of reuse. The final selections of
RSC's could be provided through more easily interpretable degrees of memberships in the
key RSC reusability attributes; e.g., size, structure, or documentation, etc., all of which
would be weighted by reuser experience [OWEN88b]. The REA could also be based on
fuzzy memibership functions and fuzzy modifiers.

Specifications Development (SD) Tool

A Specifications Development (SD) tool is an extremely important tool in that it will:
facilitate the creation, storage, and retrieval of RSC's; extend the RSC practical application
from code to requirements, specifications, and design; and provide an interface to the
RSC MGT System. The SD tool can be developed independently of the GSU RSC MGT
System inasmuch as it is a general informal-to-formal specifications development tool.
However, the RSC MGT System, compared to, say, the RAPID Library System being
developed by SofTech, is general purpose, runs on PC-class machines, is already
operational, and is written in Ada.

20

The SD tool consists of four components: A Natural Language Interface; an Object
Builder; a Specification Builder; plus a RSC MGT System Interface. These software tools
will contribute in the overall reusability effort by moving the emphasis "left' (or earlier) in
the software life cycle. A major goal of this effort would be the demonstration of the reuse
of requirements and specifications, and not just code. This tool could provide a better
transition from informal to formal requirements and specifications. Thus, the SD tool would
assist the user in developing formal requirements and specifications that lend themselves to
automated methods, but that otherwise may be very difficult to generate or understand.

The user will be able to interact with the SD tool in limited natural lan$uage to
produce, for example, an object-oriented design from which a set of formal specifications
could be generated using VDM. Additional discussion on this and the two previous tools
can be found in [GAGL88b, OWEN88b].

21

Future Activities

Extensions to the ITB

Several obvious extensions both to this research and the ITB are possible. If such
extensions are made to the ITB, then it can be fully functional; i.e., intelligent. Thus, future
versions of the ITB will be capable of addressing more complex tool-related questions. For
instance, four representative types of questions would be as follows. First, if a need exists
for a software tool, by what means can the best available tool be selected? Second, if a tool
does not exist, how can its specifications best be obtained? Third, what could form the basis
to guide the design of such a necessary but non-existent tool? Fourth, to what degree can
the integration of existing tools be determined (e.g., whether or not they are "seamless")?

To answer such questions, several extensions to the ITB have been suggested. Three
specific extensions are described below: an Intelligent Tutoring System (ITS) for OOD, a
Functional Decomposition (FD) Tool, and a Software Productivity and Estimation (SPE)
Tool.

Intelligent Tutoring System (ITS). One of the major problems that operating
elements of the Information Systems and Engineering Command (ISEC) will face in the
transition of many MIS applications from COBOL to Ada is the retraining of software
personnel (e.g., designers, analysts, and programmers, etc.). Software development in Ada
requires a somewhat different approach to software engineering than what has been done in
the past. To facilitate such a transition, one possible extension of the ITB would be the ITS
which could assist ISEC in teaching modern software engineering concepts, incorporating
0OD and Ada.

A major difference between conventional CA] and the ITS is that the ITS would not
only pose problems for the users to solve, but actively assist in the solution of the problem
while also monitoring the student progress. The ITS can also offer advice either upon
request or whenever an error is made.

As it is envisioned, the ITS would comprise of three parts: an expert system, a
teaching model, and a user model. The expert system could solve problems posed by the
user. Interfaces and dialogue between the system and the user would be accomplished in
limited domain natural language. The teaching model would combine the pedagogical
method chosen, as well as the substantive material, for a given subject area. The user model
would monitor the user, assess the user's current progress, and provide advice as necessary.

An OOD tutorial, for example, would present a typical application problem in
natural language description. In accordance with OOD procedures, it would then ask the
user to determine: the objects, their attributes, the operations suffered by the objects, the
attributes of the operations and the dependencies of the objects. The output of this process
would contain both a textual as well as graphical OOD description of the system. If the
problem is sufficiently complex, then the process would recursively determine the required
sub-objects until a complete OOD design is produced.

22

For each stored problem, the OOD tutorial would use the respective solution to
monitor the user's progress as being developed in OOD. The user can ask for advice at any
point or, if the user makes an error, the system would interrupt with advice which would be
context sensitive.

Based on the OOD tutorial described above, the fully developed ITB would be a very
practical tool with the capability for the user to enter a problem description, rather than
using the stored problems, and the system itself would generate a solution. At this point, the
system could become a true design tool rather than simply an intelligent tutor.

Functional Decomposition (FD) Tool. Functionality is a means of creating RSC's
and achieving reusability. Tools to decompose processes and describe their functionality are
needed before Ada RSCs can be developed, particularly for environments such as STAMIS.
The central idea here is that common functions from different STAMIS systems, if carefully
defined and sufficiently repeated, could form a basis for reusability.

The method behind the FD tool was presented at the February 1988 ACM Atlanta
Computer Science Conference, and a description is contained in the Conference
Proceedings [GAGL88a]. The basis of the FD tool is a resource management model which
provides the means to capture the essence of functionality. The structure for the resource
management model assumes the form of a directed graph (digraph) of entities as nodes with
identical activities as arcs at each of the nodes. From this (first) digraph of entities, a
second digraph of common functions is derived whose nodes are then decomposed to
identify unique software modules. Subsequent applications of structured design lead to the
internal organization of each of the modules.

Like other large MIS, the STAMIS are mainly concerned with personnel, resource
acquisition, management, distribution, transportation, and associated financial activities.
Their various software systems exhibit files of such variety that common features are often
obscured. Nevertheless, the commonalities that exist could be uncovered and subsequently
utilized by this functional decomposition tool.

The transition from the entity digraph to the functional digraph would then be
instantiated with this tool. Whereas the overall intent of this tool is to assist in the task of
producing RSC's, the specifics of any application would depend on the identification of the
nodes and connections, as well as the structure of the entity digraph.

Moreover, the transition to the functional digraph would be made by using a
top-down approach beginning with the most aggregated view of the activities involved.
Then, successively more disaggregated digraphs can be constructed using OOD. The
process is stopped when the benefits of further disaggregation cannot be justified through
reusability.

This FD tool would employ an inductive scheme to find the appropriate abstraction
concepts, and a deductive scheme to show how the software specifications can be developed
based on functionality. The frequency of calls as indicated by the arcs in the functional
digraph would provide an a0iod measure of reusability of the various modules.

23

Software Productivity and Estimation (SPE) Tool. A key dimension in software
development is productivity, with major questions concerning how to define, measure and
improve it. One definition, in the usual sense of efficiency, holds that productivity is the
ratio of output to input. Here, "input" means the resources consumed in the creation of the
system (time of the individuals involved and the cost of the computer resources employed).
SuZ times and costs can be measured in a fairly straightforward fashion after the fact.
However, they are much more difficult to estimate in advance when perhaps only the
specifications are available.

Of even greater difficulty is the measurement of "output," either before or after the
system is operational. Such well established metrics as lines of code (LOC) are notoriously
unreliable. For instance, if the same system were to be developed in a third generation
language (e.g., COBOL or Ada) versus a fourth generation language (e.g., Focus or
RAMIS), LOC comparisons would be meaningless, even though both versions contained the
same functionality.

In commercial environments, the use of Function Point Analysis (FPA) as both an
estimating tool and as a gauge of productivity is beginning to gain many converts. However,
virtually nothing has been done with this approach in an Ada environment. The
development of a prototype of this tool within the ITB would pinpoint the similarities and
differences between such environments. More importantly, the calculation of a variety of
different function points could be adapted to the Army MIS redirection efforts.

The use of FPA would require careful calibration at each development site in order
to be truly useful. Analysis of the inputs, outputs, files, interfaces, and inquiries involved in a
system, coupled with measures of complexity specific to a project and its development
environment, could result in metrics that are of high value in a number of different aspects.
First, such metrics could be used before system construction to estimate project costs.
Second, they could be used to compare different development approaches and CASE tools.
Third, they can be used to compare and track the productivity of different development sites
over time.

Each of these kinds of uses of FPA should be of great potential benefit to the Army
and other parts of DoD, particularly during times of ever tightening budgets, in the effort to
improve cost effectiveness of software development and maintenance.

24

Software Tools Survey

Several times in this report, a need for a software tools survey has been indicated.Our approach to such a survey would be a classification defined by four classes of tools.These classes are: (1) commercial CASE tools in-use by the Standard Army ManagementInformation Systems (STAMIS), (2) those tools not currently in use but which areSTAMIS-particular tools, (3) commercially available CASE tools that are used by STAMIS,and (4) other prospective tools.
An important continuation of this project would utilize the classification schemeabove to conduct a software tools survey in two phases. The first phase would identify thefirst two classes of tools and how such tools are used. It is presumed that much of this typeof data pertinent to the STAMIS could be made available to AIRMICS through internalself-assessment studies. Knowledge about tools obtained from this phase could also then beentered into the /TB for analysis.

The second phase of the survey extension would determine the third class of tools,and that information similarly could be entered into the ITB. The results could then becompared, using the functions supplied by the ITB, to identify and describe the fourth classof tools that could be integrated into STAMIS software development and maintenance.

25

In this thirteen-month, coordinated yet multi-faceted research effort, GSU has
investigated issues in the analysis, selection, implementation, and evaluation of software
tools. Several significant contributions have been made, the most important of which is the
development of a prototype Intelligent TestBed or ITB. The prototype was implemented on
both an IBM PS/2 and a Mac IIcx, with detailed discussions of its use provided in appendices
C and D. The major deliverables of this pi-oject are, therefore, these two versions of the
ITB, the associated user documentation, copies of a videotape of a demonstration session,
and two conference papers.

This final technical report contains a brief review of some of the issues involved in
software tools, reuse, and libraries, plus an overview of this project as well as the origins of
the ITB. However, the major discussion concerns the development and demonstration of
the ITB which currently is only minimally populated with descriptions of software
development methodologies and references to CASE tools. An immediate extension to the
ITB would allow the continuing classification of software tools, as well as the testing of other
tool "proofs of concept." Additional potential uses of the ITB have also been suggested, for
example, the ITB tutorial system, the use of the ITB for PC-based Ada tools tutorials, and
the software tools survey.

The ITB was designed to provide a computer generated medium in which to analyze
software development methodologies and allow the visualization of their organizing schema.
Its two dimensions are as follows: the columns turned out to be the phases of Georgia State
Development Life Cycle (GSDLC) and the rows are different software development
methodologies. Entries in the five levels of the ITB can be accessed by use of hypertext
buttons.

The ITB is conceptually different from, and perhaps superior to, either a PDL or an
SDE such as Methodology Engineering. The ITB does not attempt to formally describe
methodologies, nor does it provide the means for generating or adapting customized
techniques for SDEs. Additionally, the ITB is adaptable to a three levels of users: the
noice for inquiring of information; manzagm mn for gaining directions of intent; and,
experienced software designers and programmers for assessing tradeoffs of methods and
tools.

26

References

[BJOR78J Bjorner, D., "Software Abstraction Principles," in Lecture Notes in ComputerScience 61: The Vienna Development Method: The Meta Language. Bjorner,D., and C. B. Jones (eds.), Springer-Verlag, New York, 337-374, 19-78.

[BOEH81] Boehm, B. Software Engineering Economics. Prentice-Hall, 1981.
[CONG89] Conger, S. A. and J. L Wynekoop, "A Framework for Evaluating Computer

Aided Software Engineering Research Tools," Proceedings of the ACM
Southeast Regonal Conference, April 1989.

[DAVI85] Davis, G. B. and M. H. Olson. Management Information Systems: Conceptual
Foundations. Structure and Development. McGraw-Hill, 1985.

[D2167A] DoD Mil-Std 2167A, Software Development (draft), 1988.
[BIGE88] Bigelow, J., "Hypertext and CASE", IEEESofta, Vol. 5 (2), 23-27, March,1988.

[DUCE88] Duce, D. A., Fielding E. V. C., and Marshall, L.S., "Formal Specification of aSmall Example Based on GKS", ACM Transactions on Graphics, Vol. 7, No.
3, 180-197, July 1988.

[FREE80] Freeman, P. and Wasserman, A. A Tutorial on Software Design Techniques,3rd Edition, IEEE Computer Society, 1980.

[GAGL88a] .Galiano, R. A., M. D. Fraser, M. E. Schaefer and G. S. Owen. "Functionalityin the Reusability of Software", Proceedinps of the ACM 88 Computer
Science Conference, 540-545, February 1988.

[GAGL88b] Gagliano, R. A., M. D. Fraser, G. S. Owen, and P. A. Honkanen, 'Tools forthe Classification, Storage, and Retrieval of Reusable Ada Software,"
(forthcoming) Proceedings of the 6th Symosium on Empirical Foundations
of Information and Software Sciences, Atlanta, GA, October 1988.

[GAGL891 Gagliano, R. A., M. D. Fraser, and G. S. Owen. "Guidelines for Reusable AdaLibrary Tools," in Ada Reusability Guidebook, Project DE-AC05-840R21400,
Martin Marietta Energy Systems, Inc., 83-94, 1989.

[IEEE83] IEEE Software Engineering Dictionary. IEEE, 1983.
[JONE78] Jones, C. B. (1978) "The Meta-Language: A Reference Manual," in LNotes in Computer Science 61 The Vienna Development Method: The Meta

Lwiguag& Bjorner, D. and C. B. Jones (eds.), Springer-Verlag, New York,
218-277.

27

(KUMA881 Kumar, K. and R. J. Welke, "Methodology Engineering: A Proposal for
Situation Specific Methodologly Construction," in the Proceedings of the Cawe
Stde 8Cofrne Ann Arbor, 1988.

[OWEN87J Owen, G. S., R. A. Gagliano, and P. A. Honkanen, "Functional Specifications
of Reusable MIS Software in Ada", Proceeding& of the Joint Ada Conference
5th National Conference on Ada Technology and Symoim 19-26, March
1987.

[OWEN88aJ Owen, G. S., R. A. Gagliano, and P. A. Honkanen, 'Tools for the Storage and
Retrieval of Reusable MIS Software in Ada," Proceedinas of the ACM 88
Computer Science Conference, 535-539, February 1988.

[OWEN88b] Owen, G. S., M. D. Fraser and R. A. Gagliano, "Knowledge Based Tools for
Reusable Ada Software," (forthcoming) Proceedings of the 6th Symp~osium on
Empirical Foundations of Information and Software Sciences, Atlanta, GA,
October 1988.

[SCH-A88J Schafer, G. Functional Analysis of Office Requirements: A Multiperspective
Aproach. New York: John Wiley, 1988.

[SUYD871 Suydam, W., "CASE Makes Strides Toward Automated Software
Development", C-omn~uer Deggn, Vol. 26, No. 1, 49-70, January 1, 1987.

[WELK831 Welke, R. J., "IS/DSS: DBMS Support for Information Systems
Development," in C. W. Holsapple and A. B. Winston (eds.), Data Base
ManageCMent: Theory and Applic-ai. D. Reidel Pub]., 195-250, 1983.

28

Appendices

A. Ada Technology Conference Paper #1
("A Structured Stepwise Refinement Method for VDM")

B. Ada Technology Conference Paper #2
'The Intelligent Test Bed: A Tool for Software

Development and Software Engineering Education")

C. ITB User Manual for the PS/2

D. ITB User Manual for the Mac Ilcx

E. ITB Specification in VDM

29

